1 research outputs found

    Task-Priority Control of Redundant Robotic Systems using Control Lyapunov and Control Barrier Function based Quadratic Programs

    Full text link
    This paper presents a novel task-priority control framework for redundant robotic systems based on a hierarchy of control Lyapunov function (CLF) and control barrier function (CBF) based quadratic programs (QPs). The proposed method guarantees strict priority among different groups of tasks such as safety-related, operational and optimization tasks. Moreover, a soft priority measure in the form of penalty parameters can be employed to prioritize tasks at the same priority level. As opposed to kinematic control schemes, the proposed framework is a holistic approach to control of redundant robotic systems, which solves the redundancy resolution, dynamic control and control allocation problems simultaneously. Numerical simulations of a hyper-redundant articulated intervention autonomous underwater vehicle (AIAUV) is presented to validate the proposed framework.Comment: 21st IFAC World Congres
    corecore